
Approximating Directed Weighted-Degree
Constrained Networks

Zeev Nutov

The Open University of Israel, Raanana, Israel
nutov@openu.ac.il

Abstract. Given a graph H = (V, F) with edge weights {w(e) : e ∈ F},
the weighted degree of a node v in H is

∑

{w(vu) : vu ∈ F}. We give
bicriteria approximation algorithms for problems that seek to find a mini-
mum cost directed graph that satisfies both intersecting supermodular

connectivity requirements and weighted degree constraints. The input to
such problems is a directed graph G = (V, E), edge-costs {c(e) : e ∈ E},
edge-weights {w(e) : e ∈ E}, an intersecting supermodular set-function
f on V , and degree bounds {b(v) : v ∈ V }. The goal is to find a minimum
cost f -connected subgraph H = (V, F) (namely, at least f(S) edges in
F enter every S ⊆ V) of G with weighted degrees ≤ b(v). Our algorithm
computes a solution of cost ≤ 2 · opt, so that the weighted degree of
every v ∈ V is at most: 7b(v) for arbitrary f and 5b(v) for a 0, 1-valued
f ; 2b(v)+4 for arbitrary f and 2b(v)+2 for a 0, 1-valued f in the case of
unit weights. Another algorithm computes a solution of cost ≤ 3 ·opt and
weighted degrees ≤ 6b(v). We obtain similar results when there are both
indegree and outdegree constraints, and better results when there are
indegree constraints only: a (1, 4)-approximation algorithm for arbitrary
weights and a polynomial time algorithm for unit weights. Finally, we
consider the problem of packing maximum number k of edge-disjoint
arborescences so that their union satisfies weighted degree constraints,
and give an algorithm that computes a solution of value at least bk/36c.

1 Introduction

1.1 Problem definition

In many Network Design problems one seeks to find a low-cost subgraph H
of a given graph G that satisfies prescribed connectivity requirements. Such
problems are vastly studied in Combinatorial Optimization and Approximation
Algorithms. Known examples are Min-Cost k-Flow, b-Edge-Cover, Min-Cost Span-
ning Tree, Traveling Salesperson, directed/undirected Steiner Tree, Steiner Forest,
k-Edge/Node-Connected Spanning Subgraph, and many others. See, e.g., surveys
in [16, 4, 8, 10, 12].

In Degree Constrained Network Design problems, one seeks the cheapest sub-
graph H of a given graph G that satisfies both prescribed connectivity require-
ments and degree constraints. One such type of problems are the matching/edge-
cover problems, which are solvable in polynomial time, c.f., [16]. For other degree

constrained problems, even checking whether there exists a feasible solution is
NP-complete, hence one considers bicriteria approximation when the degree con-
straints are relaxed.

The connectivity requirements can be specified by a set function f on V , as
follows.

Definition 1. For an edge set or a graph H and node set S let δH(S) (δin
H (S))

denote the set of edges in H leaving (entering) S. Given a set-function f on
subsets of V and a graph H = (V, F), we say that H is f -connected if

|δin
H (S)| ≥ f(S) for all S ⊆ V. (1)

Several types of f are considered in the literature, among them the following
known one:

Definition 2. A set function f on V is intersecting supermodular if for any
X,Y ⊆ V , X ∩ Y 6= ∅

f(X) + f(Y) ≤ f(X ∩ Y) + f(X ∪ Y) . (2)

We consider directed network design problems with weighted-degree constra-
ints. For simplicity of exposition, we will consider mainly out-degree constraints,
but our results easily extend to the case when there are also in-degree constraints,
see Section 6. The problem we consider is:

Directed Weighted Degree Constrained Network (DWDCN)
Instance: A directed graph G = (V,E), edge-costs {c(e) : e ∈ E}, edge-weights

{w(e) : e ∈ E}, set-function f on V , and degree bounds {b(v) : v ∈ V }.
Objective: Find a minimum cost f -connected subgraph H = (V, F) of G that

satisfies the weighted degree constraints

w(δH(v)) ≤ b(v) for all v ∈ V . (3)

We assume that f admits a polynomial time evaluation oracle. Since for
most functions f even checking whether DWDCN has a feasible solution is NP-
complete, we consider bicriteria approximation algorithms. Assuming that the
problem has a feasible solution, an (α, β)-approximation algorithm for DWDCN
either computes an f -connected subgraph H = (V, F) of G of cost ≤ α · opt
that satisfies w(δH(v)) ≤ β · b(v) for all v ∈ V , or correctly determines that the
problem has no feasible solution. Note that even if the problem does not have
a feasible solution, the algorithm may still return a subgraph that violates the
degree constraints (3) by a factor of β.

A graph H is k-edge-outconnected from r if it has k-edge-disjoint paths from
r to any other node. DWDCN includes as a special case the Weighted Degree
Constrained k-Outconnected Subgraph problem, by setting f(S) = k for all ∅ 6=
S ⊆ V − r, and f(S) = 0 otherwise. For k = 1 we get the Weighted Degree
Constrained Arborescence problem. We also consider the problem of packing maxi-
mum number k of edge-disjoint arborescences rooted at r so that their union H

satisfies (3). By Edmond’s Theorem, this is equivalent to requiring that H is
k-edge-otconnected from r and satisfies (3). This gives the following problem:

Weighted Degree Constrained Maximum Arborescence Packing (WDCMAP)
Instance: A directed graph G = (V,E), edge-weights {w(e) : e ∈ E}, degree

bounds {b(v) : v ∈ V }, and r ∈ V .
Objective: Find a k-edge-outconnected from r spanning subgraph H = (V, F) of

G that satisfies the degree constraints (3) so that k is maximum.

1.2 Our results

Our main results are summarized in the following theorem. For an edge set I, let
x(I) =

∑

e∈I x(e). Let opt denote the optimal value of the following natural LP-
relaxation for DWDCN that seeks to minimize c · x over the following polytope
Pf :

x(δin
E (S)) ≥ f(S) for all ∅ 6= S ⊂ V

∑

e∈δE(v)

x(e)w(e) ≤ b(v) for all v ∈ V

0 ≤ x(e) ≤ 1 for all e ∈ E

Theorem 1. DWDCN with intersecting supermodular f admits a polynomial
time algorithm that computes an f -connected graph of cost ≤ 2opt so that the
weighted degree of every v ∈ V is at most: 7b(v) for arbitrary f and 5b(v) for
a 0, 1-valued f ; for unit weights, the degree of every v ∈ V is at most 2b(v) + 4
for arbitrary f and 2b(v) + 2 for a 0, 1-valued f . The problem also admits a
(3, 6)-approximation algorithm for arbitrary weights and arbitrary intersecting
supermodular f .

Interistingly, we can show a much better result for the case of indegree con-
straints only (for the case of both indegree and outdegree constraints see Sec-
tion 6).

Theorem 2. DWDCN with intersecting supermodular f and with indegree con-
straints only, admits a (1, 4)-approximation algorithm for arbitrary weights, and
a polynomial time algorithm for unit weights.

Theorem 1 has several applications. Bang-Jensen, Thomassé, and Yeo [1]
conjectured that every k-edge-connected directed graph G = (V,E) contains a
spanning arborescence H so that |δH(v)| ≤ |δG(v)|/k+1 for every v ∈ V . Bansal,
Khandekar, and Nagarajan [2] proved that even if G is only k-edge-outconnected
from r, then G contains such H so that |δH(v)| ≤ |δG(v)|/k + 2. We prove
that for any ` ≤ k, G contains an `-outconnected from r spanning subgraph H
which cost and weighted degrees are not much larger than the ”expected” values
c(G) · (`/k) and wG(v) · (`/k). In particular, one can find an arborescence with
both low weighted degrees and low cost.

Corollary 1. Let Hk = (V, F) be a k-outconnected from r directed graph with
costs {c(e) : e ∈ F} and weights {w(e) : e ∈ F}. Then for any ` ≤ k the graph Hk

contains an `-outconnected from r subgraph H` so that c(H`) ≤ c(Hk) · (2`/k)
and so that for all v ∈ V : w(δH`

(v)) ≤ w(δHk
(v)) · (7`/k), and w(δH`

(v)) ≤
w(δHk

(v))·(5/k) for ` = 1; for unit weights, |δH`
(v)| ≤ |δHk

(v)|·(2`/k)+2. There
also exists H` so that c(H`) ≤ c(Hk) · (3`/k) and w(δH`

(v)) ≤ w(δHk
(v)) · (6`/k)

for all v ∈ V .

Proof. Consider the Weighted Degree Constrained `-Outconnected Subgraph prob-
lem on Hk with degree bounds b(v) = w(δHk

(v)) · (`/k). Clearly, x(e) = `/k for
every e ∈ F is a feasible solution of cost c(Hk) · (`/k) to the LP-relaxation
min{c · x : x ∈ Pf} where f(S) = ` for all ∅ 6= S ⊆ V − r, and f(S) = 0
otherwise. By Theorem 1, our algorithm computes a subgraph H` as required.

Another application is for the WDCMAP problem. Ignoring costs, Theorem 1
implies a “pseudo-approximation” algorithm for WDCMAP that computes the
maximum number k of packed arborescences, but violates the weighted degrees.
E.g., using the (3, 6)-approximation algorithm from Theorem 1, we can compute
a k-outconnected H that violates the weighted degree bounds by a factor of 6,
where k is the optimal value to WDCMAP. Note that assuming P6=NP, WDCMAP
cannot achieve a 1/ρ-approximation algorithm for any ρ > 0, since deciding
whether k ≥ 1 is equivalent to the Degree Constrained Arborescence problem,
which is NP-complete. We can however show that if the optimal value k is not
too small, then the problem does admit a constant ratio approximation.

Theorem 3. WDCMAP admits a polynomial time algorithm that computes a
feasible solution H that satisfies (3) so that H is bk/36c-outconnected from r.

Proof. The algorithm is very simple. We set b′(v) ← b(v)/6 for all v ∈ V and
apply the (3, 6)-approximation algorithm from Theorem 1. The degree of every
node v in the subgraph computed is at most 6b′(v) ≤ b(v), hence the solution is
feasible. All we need to prove is that if the original instance admits a packing
of size k, then the new instance admits a packing of size bk/36c. Let Hk be an
optimal solution to WDCMAP. Substituting ` = bk/36c in the last statement
of Corollary 1 and ignoring the costs we obtain that Hk contains a subgraph
H` which is `-outconnected from r so that w(δH`

(v)) ≤ w(δHk
(v)) · (6`/k) ≤

w(δHk
(v))/6 ≤ b(v)/6 for all v ∈ V , as claimed.

We note that Theorem 3 easily extends to the case when edges have costs;
the cost of the subgraph H computed is at most the minimum cost of a feasible
k-outconnected subgraph.

1.3 Previous and related work

Fürer and Raghavachari [6] considered the problem of finding a spanning tree
with maximum degree ≤ ∆, and gave an algorithm that computes a spanning
tree of maximum degree ≤ ∆ + 1. This is essentially the best possible since

computing the optimum is NP-hard. A variety of techniques were developed in
attempt to generalize this result to the minimum-cost case – the Minimum Degree
Spanning Tree problem, c.f., [15, 11, 3]. Goemans [7] presented an algorithm that
computes a spanning tree of cost ≤ opt and with degrees at most b(v) + 2 for
all v ∈ V , where b(v) is the degree bound of v. An optimal result was obtained
by Singh and Lau [17]; their algorithm computes a spanning tree of cost ≤ opt
and with degrees at most b(v) + 1 for all v ∈ V . The algorithm of Singh and
Lau [17] uses the method of iterative rounding. This method was initiated in a
seminal paper of Jain [9] that gave a 2-approximation algorithm for the Steiner
Network problem. Without degree constraints, this method is as follows: given
an optimal basic solution to an LP-relaxation for the problem, round at least
one entry, and recurse on the residual instance. The algorithm of Singh and Lau
[17] for the Minimum Bounded Degree Spanning Tree problem is a surprisingly
simple extension – either round at least one entry, or remove a degree constraint
from some node v. The non-trivial part usually is to prove that basic fractional
solution have certain ”sparse” properties.

For unit weights, the following results were obtained recently. Lau, Naor, Sal-
vatipour, and Singh [13] were the first to consider general connectivity require-
ments. They gave a (2, 2b(v)+3)-approximation for undirected graphs in the case
when f is skew-supermodular. For directed graphs, they gave a (4opt, 4b(v)+6)-
approximation for intersecting supermodular f , and (8opt, 8b(v)+6)-approxima-
tion for crossing supermodular f (when (2) holds for any X,Y that cross). Re-
cently, in the full version of [13], these ratios were improved to (3opt, 3b(v) + 5)
for crossing supermodular f , and (2opt, 2b(v) + 2) for 0, 1-valued intersecting
supermodular f . For the latter case we obtain the same ratio, but our proof is
simpler than the one in the full version of [13].

Bansal, Khandekar, and Nagarajan [2] gave for intersecting supermodular f

a (1
ε
· opt, d b(v)

1−ε
e + 4)-approximation scheme, 0 ≤ ε ≤ 1/2. They also showed,

that this ratio cannot be much improved based on the standard LP-relaxation.

For crossing supermodular f [2] gave a (2
ε
·opt, d b(v)

1−ε
e+4+fmax)-approximation

scheme. For the degree constrained arborescence problem (without costs) [2] give
an algorithm that computes an arborescence H with |δH(v)| ≤ b(v) + 2 for all
v ∈ V . Some additional results for related problems can also be found in [2].

For weighted degrees, Fukunaga and Nagamochi [5] considered undirected
network design problems and gave a (1, 4)-approximation for minimum spanning
trees and a (2, 7)-approximation algorithm for arbitrary weakly supermodular
set-function f .

2 Proof of Theorem 1

During the algorithm, F denotes the partial solution, I are the edges to add to
F , and B is the set of nodes on which the outdegree bounds constraints are still
present. The algorithm starts with F = ∅, B = V and performs iterations. In
any iteration, we work with the ”residual problem” polytope Pf (I, F,B) (α ≥ 1
is a fixed parameter):

x(δin
I (S)) ≥ f(S)− |δin

F (S)| for all ∅ 6= S ⊂ V
∑

e∈δI(v)

x(e)w(e) ≤ b(v)− w(δF (v))/α for all v ∈ B

0 ≤ x(e) ≤ 1 for all e ∈ I

Recall some facts from polyhedral theory. Let x belong to a polytope P ⊆ Rm

defined by a system of linear inequalities; an inequality is tight (for x) if it
holds as equality for x. x ∈ P is a basic solution for (the system defining) P
if there exist a set of m tight inequalities in the system defining P such that
x is the unique solution for the corresponding equation system; that is, the
corresponding m tight equations are linearly independent. It is well known that
if min{c · x : x ∈ P} has an optimal solution, then it has an optimal solution
which is basic, and that a basic optimal solution for {c · x : x ∈ Pf (I, F,B)} can
be computed in polynomial time, c.f., [13].

Note that if x ∈ Pf (I, F,B) is a basic solution so that 0 < x(e) < 1 for all
e ∈ I, then every tight equation is induced by either:

• cut constraint x(δin
I (S)) ≥ f(S)− |δin

F (S)| defined by some set ∅ 6= S ⊂ V
with f(S)− |δin

F (S)| ≥ 1.

• degree constraint
∑

e∈δI(v) x(e)w(e) ≤ b(v) − w(δF (v))/α defined by some
node v ∈ B.

A family F of sets is laminar if for every S, S ′ ∈ F , either S ∩ S′ = ∅, or
S ⊂ S′, or S′ ⊂ S. We use the following statement observed in [13] for unit
weights, which also holds in our setting.

Lemma 1. For any basic solution x to Pf (I, F,B) with 0 < x(e) < 1 for all
e ∈ I, there exist a laminar family L on V and T ⊆ B such that x is the unique
solution to the linear equation system:

x(δin
I (S)) = f(S)− |δin

F (S)| for all S ∈ L
∑

e∈δI(v)

x(e)w(e) = b(v)− w(δF (v))/α for all v ∈ T

where f(S) − |δin
F (S)| ≥ 1 for all S ∈ L. In particular, |L| + |T | = |I| and the

characteristic vectors of δin
I (S) for all S ∈ L are linearly independent.

Proof. Let F = {∅ 6= S ⊂ V : x(δin
E (S)) = f(S) − |δin

F (S)| ≥ 1}, (i.e., the tight
sets) and T = {v ∈ B :

∑

e∈δI(v) x(e)w(e) = b(v) − w(δF (v))/α} (i.e., the tight

nodes in B). For F ′ ⊆ F let span(F ′) denote the linear space generated by the
characteristic vectors of δin

I (S), S ∈ F ′. Similarly, span(T ′) is the linear space
generated by the weight vectors of δI(v), v ∈ T ′. In [9] (see also [14]) it is proved
that a maximal laminar subfamily L of F satisfies span(L) = span(F). Since
x ∈ Pf (I, F,B) is a basic solution, and 0 < x(e) < 1 for all e ∈ I, |I| is at most

the dimension of span(F) ∪ span(T) = span(L) ∪ span(T). Hence repeatedly
removing from T a node v so that span(L) ∪ span(T − v) = span(L) ∪ span(T)
results in L and T as required.

Definition 3. The polytope Pf (I, F,B) is (α,∆)-sparse for integers α,∆ ≥ 1 if
any basic solution x ∈ Pf (I, F,B) has an edge e ∈ I with x(e) = 0, or satisfies
at least one of the following:

x(e) ≥ 1/α for some e ∈ I (4)

|δI(v)| ≤ ∆ for some v ∈ B (5)

We prove the following two general statements that imply Theorem 1:

Theorem 4. If for any I, F the polytope Pf (I, F,B) is (α,∆)-sparse (if non-
empty), then DWDCN admits an (α, α + ∆)-approximation algorithm; for unit
weights the algorithm computes a solution F so that c(F) ≤ α ·opt and |δF (v)| ≤
αb(v) + ∆− 1 for all v ∈ V .

Theorem 5. Pf (I, F,B) is (2, 5)-sparse and (3, 3)-sparse for intersecting su-
permodular f ; if f is 0, 1-valued, then Pf (I, F,B) is (2, 3)-sparse.

3 The Algorithm (Proof of Theorem 4)

The algorithm perform iterations. Every iteration either removes at least one
edges from I or at least one node from B. In the case of unit weights we assume
that all the degree bounds are integers.

Algorithm for DWDCN with intersecting supermodular f
Initialization: F ← ∅, B ← V , I ← E − {vu ∈ E : w(vu) > b(v)}.
If Pf (I, F,B) = ∅, then return ”UNFEASIBLE” and STOP.
While I 6= ∅ do:

1. Find a basic solution x ∈ Pf (I, F,B).
2. Remove from I all edges with x(e) = 0.
3. Add to F and remove from I all edges with x(e) ≥ 1/α.
4. Remove from B every v ∈ B with |δI(v)| ≤ ∆.

EndWhile

Lemma 2. DWDCN admits an (α, α + ∆)-approximation algorithm if every
polytope Pf (I, F,B) constructed during the algorithm is (α,∆)-sparse; further-
more, for unit weights, the algorithm computes a solution F so that c(F) ≤ α·opt
and |δF (v)| ≤ αb(v) + ∆− 1 for all v ∈ V .

Proof. Clearly, if Pf (I, F,B) = ∅ at the beginning of the algorithm, then the
problem has no feasible solution, and the algorithm indeed outputs ”INFEA-
SIBLE”. It is also easy to see that if Pf (I, F,B) 6= ∅ at the beginning of the
algorithm, then Pf (I, F,B) 6= ∅ throughout the subsequent iterations. Hence if
the problem has a feasible solution, the algorithm returns an f -connected graph,

and we need only to prove the approximation ratio. As for every edge added we
have x(e) ≥ 1/α, the algorithm indeed computes a solution of cost ≤ α · opt.

Now we prove the approximability of the degrees. Consider a node v ∈ V .
Let F ′ be the set of edges in δF (v) added to F while v ∈ B, and let F ′′ be
the set of edges in I leaving v at Step 3 when v was excluded from B. Clearly,
δF (v) ⊆ F ′ ∪F ′′. Note that at the moment when v was excluded from B we had

w(F ′) ≤ α

(

b(v)−
∑

e∈F ′′

x(e)w(e)

)

In particular, w(F ′) ≤ αb(v). Also, |F ′′| ≤ ∆ and thus w(F ′′) ≤ |F ′′| · b(v) ≤
∆b(v). Consequently, w(δF (v)) ≤ w(F ′)+w(F ′′) ≤ αb(v)+∆b(v) = (α+∆)b(v).

Now consider the case of unit weights. We had |F ′| ≤ α
(

b(v)−
∑

e∈F ′′ x(e)
)

when v was excluded from B. Moreover, we had x(e) > 0 for all e ∈ F ′′, since
edges with x(e) = 0 were removed at Step 2, before v was excluded from B.
Hence if F ′′ 6= ∅ then |F ′| < αb(v), and thus |F | ≤ |F ′| + |F ′′| < αb(v) + ∆.
Since all numbers are integers, this implies |F | ≤ αb(v) + ∆ − 1. If F ′′ = ∅,
then |F | = |F ′| ≤ αb(v) ≤ αb(v) + ∆ − 1. Consequently, in both cases |F | ≤
αb(v) + ∆− 1, as claimed.

4 Sparseness of Pf(I, F, B) (Proof of Theorem 5)

Let L and T be as in Lemma 1. Define a child-parent relation on the members
of L + T as follows. For S ∈ L or v ∈ T , its parent is the inclusion minimal
member of L properly containing it, if any. Note that if v ∈ T and {v} ∈ L,
then {v} is the parent of v, and that no members of T has a child. For every
edge uv ∈ I assign one tail-token to u and one head-token to v, so every edge
contributes exactly 2 tokens. The number of tokens is thus 2|I|.

Definition 4. A token contained in S is an S-token if it is not a tail-token of
an edge vu leaving S so that v /∈ T (so a tail-token of an edge vu leaving S is
an S-token if, and only if, v ∈ T).

Recall that we need to prove that if x ∈ Pf (I, F,B) is a basic solution so
that 0 < x(e) < 1 for all e ∈ I, then there exists e ∈ I with x(e) ≥ 1/α or there
exists v ∈ B with |δI(v)| ≤ ∆. Assuming this is not so, we have:

The Negation Assumption:
- |δin

I (S)| ≥ α + 1 for all S ∈ L;
- |δI(v)| ≥ ∆ + 1 for all v ∈ T .

We obtain the contradiction |I| > |L| + |T | by showing that for any S ∈ L
we can assign the S-tokens so that every proper descendant of S in L+ T gets
2 S-tokens and S gets at least 3 S-tokens. Except the proof of (2, 3)-sparseness
of 0, 1-valued f , our assignment scheme will be:

The (2, α + 1)-Scheme:
- every proper descendant of S in L+ T gets 2 S-tokens;
- S gets α + 1 S-tokens.

Initial assignment:
For every v ∈ T , assign the |δI(v)| tail-tokens of the edges in δI(v).

The rest of the proof is by induction on the number of descendants of S in L.
If S has no children/descendants in L, it has at least |δin

I (S)| ≥ α+1 head-tokens
of the edges in δin

I (S). We therefore assume that S has in L at least one child.
Given S ∈ L with at least one child in L, let C be the set of edges entering some
child of S, J the set of edges entering S or a child of S but not both, and D the
set of edges that enter a child of S and their tail is in T ∩ S but not in a child
of S. Formally:

C =
⋃

{δin
I (R) : R is a child in L of S}

J = (δin
I (S)− C) ∪ (C − δin

I (S))

D = {e = vu ∈ C − δin
I (S) : v ∈ T} .

Lemma 3. Let S ∈ L and suppose that 0 < x(e) < 1 for all e ∈ E. Then
|J | ≥ 2, and every edge e ∈ J −D has an endnode that owns an S-token that is
not an R-token of any child R of S in L.

Proof. C = δin
I (S) contradicts linear independence, hence one of the sets δin

I (S)−
C,C − δin

I (S) is nonempty. If one of these sets is empty, say δin
I (S) − C = ∅,

then x(C) − x(δin
I (S)) must be a positive integer. Thus |C − δin

I (S)| ≥ 2, as
otherwise there is an edge e ∈ C − δin

I (S) with x(e) = 1. The proof of the case
C − δin

I (S) = ∅ is identical. The second statement is straightforward.

4.1 Arbitrary intersecting supermodular f

For (2, 5)-sparseness the Negation Assumption is |δin
I (S)| ≥ 3 for all S ∈ L, and

|δI(v)| ≥ 6 for all v ∈ T . We prove that then the (2, 3)-Scheme is feasible. First,
for every v ∈ T , we reassign the |δI(v)| tail-tokens assigned to v as follows:
- 3 tokens to v;
- 1/2 token to every edge in δI(v) (this is feasible since |δI(v)| ≥ 6).

Claim. If S has at least 3 children in L, then the (2, 3)-Scheme is feasible.

Proof. By moving one token from each child of S to S we get an assignment as
required.

Claim. If S has exactly 2 children in L then the (2, 3)-Scheme is feasible.

Proof. S can get 2 tokens by taking one token from each child, and needs 1 more
token. If there is e ∈ J − D then S can get 1 token from an endnode of e, by
Lemma 3. Else, |D| = |J | ≥ 2. As every edge in D owns 1/2 token, S can collect
1 token from edges in D.

Claim. If S has exactly 1 child in L, say R, then the (2, 3)-Scheme is feasible.

Proof. S gets 1 token from R, and needs 2 more tokens. We can collect |J −
D|+ |D|/2 + |T ∩ (S −R)| S-tokens that are not R-tokens, from edges in J and
from the children of S in T , by Lemma 3 and our assignment scheme. We claim
that |J −D|+ |D|/2 + |T ∩ (S−R)| ≥ 2. This follows from the observation that
if |J −D| ≤ 1 then |T ∩ (S −R)| ≥ 1, and if |J −D| = 0 then |D| = |J | ≥ 2, by
Lemma 3.

It is easy to see that during our distribution procedure no token was assigned
twice. For ”node” tokens this is obvious. For 1/2 tokens on the edges, this follows
from the fact that each time we assigned a 1/2 token of an edge, both endnodes
of this edge were inside S, as this edge was connecting the two children of S.

For (3, 3)-sparseness the Negation Assumption is |δin
I (S)| ≥ 4 for all S ∈ L

and |δI(v)| ≥ 4 for all v ∈ T . In this case we can easily prove that the (2, 4)-
Scheme is feasible. If S has at least 2 children in L, then by moving 2 tokens
from each child to S we get an assignment as required. If S has exactly 1 child
in L, say R, then S gets 2 tokens from R, and needs 2 more tokens. If D = ∅
then S can get 2 tokens from endnodes of the edges in J . Else, S has a child in
T , and can get 2 tokens from this child.

4.2 Improved sparseness for 0, 1-valued f

Here the Negation Assumption is |δin
I (S)| ≥ 3 for all S ∈ L and |δI(v)| ≥ 4 for all

v ∈ T . Assign colors to members of L + T as follows. All nodes in T are black;
S ∈ L is black if S∩T 6= ∅, and S is white otherwise. We show that given S ∈ L,
we can assign the S-tokens so that:

The (2, 3, 4)-Scheme
- every proper descendant of S gets 2 S-tokens;
- S gets at least 3 S-tokens, and S gets 4 S-tokens if S is black.

As in the other cases, the proof is by induction on the number of descendants
of S in L. If S has no descendants in L, then S gets |δin

I (S)| ≥ 3 head tokens
of the edges in δin

I (S); if S is black, then S has a child in T and S gets 1 more
token from this child.

Lemma 4. If J = D then S has a child in T or at least 2 black children in L.

Proof. Otherwise, all edges in J must have tails in T ∩R for some child R of S,
and every edge that enters S also enters some child of S. Thus δin

I (R) ⊆ δin
I (S),

and since x(δin
I (R)) = x(δin

I (S)) = 1, we must have δin
I (R) = δin

I (S). This
contradicts linear independence.

Claim. If S has in L+T at least 3 children, then the (2, 3, 4)-Scheme is feasible.

Proof. S gets 3 tokens by taking 1 token from each child; if S is black, then one
of these children is black, and S can get 1 more token.

Claim. If S has in L exactly 2 children, say R,R′, then the (2, 3, 4)-Scheme is
feasible.

Proof. If S has a child v ∈ T , then we are in the case of Claim 4.2. If both R,R′

are black, then S gets 4 tokens, 2 from each of R,R′. Thus we assume that S
has no children in T , and that at least one of R,R′ is white, say R′ is white. In
particular, S is black if, and only if, R is black. Thus S only lacks 1 token, that
does not come directly from R,R′. By Lemma 4 there is e ∈ J −D, and S can
get a token from an endnode of e, by Lemma 3.

Claim. If S has in L exactly one child, say R, then the (2, 3, 4)-Scheme is feasible.

Proof. Suppose that T ∩ (S−R) = ∅. Then S is black if, and only if, R is black.
Thus S needs 2 S-tokens not from R. As every edge in D has tail in T ∩ (S−R)
and head in R, D = ∅ so |J −D| = |J | ≥ 2, and thus S can get 2 S-tokens from
endnodes of the edges in J , by Lemma 3.

If there is v ∈ T ∩ (S − R), then S can get 1 token from R, 2 tokens from
v, and needs 1 more token. We claim that there is e ∈ δin

I (S) − δin
I (R), and

thus S can get the head-token of e. Otherwise, δin
I (S) ⊆ δin

I (R), and since
x(δin

I (S)) = x(δin
I (R)) = 1, we obtain δin

I (S) = δin
I (R), contradicting linear

independence.

This finishes the proof of Theorem 5, and thus also the proof of Theorem 1
is complete.

5 Indegree constraints only (Proof of Theorem 2)

Here we prove Theorem 2. Consider the following polytope P in
f (I, F,B):

x(δin
I (S)) ≥ f(S)− |δin

F (S)| for all ∅ 6= S ⊂ V
∑

e∈δin

I
(v)

x(e)w(e) ≤ b(v)− w(δin
F (v)) for all v ∈ B

0 ≤ x(e) ≤ 1 for all e ∈ I

Theorem 6. P in
f (I, F,B) is (1, 3)-sparse for intersecting supermodular f . For

unit weights and integral indegree bounds, any basic solution of P in
f (I, F,B) al-

ways has an edge e with x(e) = 1.

In Lemma 1, we have a set T in of nodes corresponding to tight in-degree
constraints. We prove that if x ∈ P in

f (I, F,B) is a basic solution so that x(e) > 0

for all e ∈ I, then there exists e ∈ I with x(e) = 1 or there exists v ∈ T in with
|δin

I (v)| ≤ 3. Otherwise, we must have:

The Negation Assumption:
- |δin

I (S)| ≥ 2 for all S ∈ L;
- |δin

I (v)| ≥ 4 for all v ∈ T in.

Assuming Theorem 5 is not true, we show that given S ∈ L, we can assign
the S-tokens so that (here token is an S-token if it is not a tail-token of an edge
leaving S):

The (2, 2)-Scheme:
S and every proper descendant of S in L+ T gets 2 S-tokens.

The contradiction |I| > |L| + |T in| is obtained by observing that if S is an
inclusion maximal set in L, then there are at least 2 edges entering S, and their
tail-tokens are not assigned, since they are not S ′-tokens for any S′ ∈ L.

Initial assignment:
For every v ∈ T , we assign the 4 tail-tokens of some edges in δin

I (v).

The rest of the proof is by induction on the number of descendants of S,
as before. If S has no children/descendants, it contains at least |δin

I (S)| ≥ 2
head-tokens, as claimed. If S has in L + T in at least one child v ∈ T in, then S
gets 2 tokens from this child.

Thus we may assume that S has at least 1 child in L and no children in T in.
Let J be as in Lemma 3, so |J | ≥ 2. One can easily verify that S can collect 1
S-token from an endnode of every edge in J . Thus the (2, 2)-Scheme is feasible.

For the case of unit weights (and integral degree bounds), we can prove that
any basic solution to P in

f (I, F,B) has an edge e with x(e) = 1. This follows

by the same proof as above, after observing that if v ∈ T in is a child of S ∈
L, then δin

I (v) 6= δin
I (S), as otherwise we obtain a contradiction to the linear

independence in Lemma 1. Thus assuming that there are at least 2 edges in I
entering any member of L + T in, we obtain a contradiction in the same way
as before, by showing that the (2, 2)-Scheme is feasible. Initially, every minimal
member of L+ T in gets 2 tail-tokens of some edges entering it. In the induction
step, any S ∈ L can collect at least 2 S-tokens that are not tokens of its children,
by Lemma 3.

Remark: Note that we also showed the well known fact (c.f., [16]), that if there
are no degree constraints at all, then there is an edge e ∈ I with x(e) = 1.

6 The case of both indegree and outdegree constraints

Here we describe the slight modifications required to handle the case when there
are both indegree and outdegree constraints. In this case, in Lemma 1, we have
sets T and T in of nodes corresponding to tight out-degree and in-degree con-
straints, respectively. Let S ∈ L and suppose that S has in L+T +T in a unique
child v ∈ T in (possibly S = {v}).

Arbitrary weights: For arbitrary weights, we can show that an appropriate poly-
tope has sparseness (α,∆,∆in) = (2, 5, 4), in the same way as in Section 4.1.
The Negation Assumption for v ∈ T in is |δin

I | ≥ 5, and we do not put any to-
kens on the edges leaving v (unless their tail is in T). Even if δin

I (S) = δin
I (v)

(note that in the case of arbitrary weights this may not contradict linear in-
dependence), the head-tokens of at least 5 edges entering v suffice to assign 2
tokens for v and 3 tokens to S. Hence in this case the approximation ratio is
(α, α + ∆,α + ∆in) = (2, 7, 6). In a similar way we can also show the sparseness
(α,∆,∆in) = (3, 3, 4), and in this case the ratio is (3, 6, 7).

Unit weights: In the case of unit weights, we must have δin
I (S) 6= δin

I (v), as
otherwise the equations of S and v are linearly dependent. Hence in this case,
it is sufficient to require |δin

I | ≥ 4, and the sparseness is (α,∆,∆in) = (2, 5, 3).
Consequently, the approximation is (α · opt, αb(v) + ∆− 1, αbin(v) + ∆in− 1) =
(2 · opt, 2b(v) + 4, 2bin(v) + 2).

0, 1-valued f : In the case of 0, 1-valued f , we can show that the corresponding
polytope has sparseness (α,∆,∆in) = (2, 3, 4), in the same way as in Section 4.2.
The negation assumption for a node v ∈ T in is |δin

I | ≥ 5; a member in L
containing a node from T in only is not black, unless it also contains a node from
T . Hence in this case the approximation ratio is (α, α + ∆,α + ∆in) = (2, 5, 6).
If we have also unit weights, then δin

I (S) 6= δin
I (v), as otherwise we obtain a

contradiction to the linear independence; hence for unit weights we can obtain
sparseness (α,∆,∆in) = (2, 3, 3), and the ratio (α · opt, αb(v) + ∆− 1, αbin(v) +
∆in − 1) = (2 · opt, 2b(v) + 2, 2bin(v) + 2).

Summarizing, we obtain the following result:

Theorem 7. DWDCN with intersecting supermodular f admits a polynomial
time algorithm that computes an f -connected graph H of cost ≤ 2 · opt so that
the weighted (degree,indegree) of every v ∈ V is at most (7b(v), 6bin(v)) for
arbitrary f , and (5b(v), 6bin(v)) for 0, 1-valued f . Furthermore, for unit weights,
the (degree,indegree) of every v ∈ V is at most (2b(v)+4, 2bin(v)+2) for arbitrary
f , and (2b(v) + 2, 2bin(v) + 2) for a 0, 1-valued f .

References

1. J. Bang-Jensen, S. Thomassé, and A. Yeo. Small degree out-branchings. J. of

Graph Theory, 42(4):287–307, 203.
2. N. Bansal, R. Khandekar, and V. Nagarajan. Additive gurantees for degree

bounded directed network design. To appear in STOC 2008.
3. K. Chaudhuri, S. Rao, S. Riesenfeld, and K. Talwar. A push-relabel algorithm for

approximating degree bounded MSTs. In ICALP, pages 191–201, 2006.
4. A. Frank. Connectivity and network flows. In R. L. Graham, M. Grötschel,

and L. Lovász, editors, Chapter 2 in Handbook of Combinatorics, pages 111–177.
Elsvier, 1995.

5. T. Fukunaga and H. Nagamochi. Network design with weighted degree constraints.
Manuscript, 2008.

6. M. Furer and B. Raghavachari. Approximating the minimum-degree steiner tree
to within one of optimal. Journal of Algorithms, 17(3):409–423, 1994.

7. M. X. Goemans. Minimum bounded degree spanning trees. In FOCS, pages 373–
282, 2006.

8. M. X. Goemans and D. P. Williamson. The primal-dual method in approximation
algorithms and its applications to network design problems. In D. S. Hochbaum,
editor, Chapter 4 inApproximation Algorithms For NP-hard Problems. PWS, 1997.

9. K. Jain. A factor 2 approximation algorithm for the generalized Steiner network
problem. Combinatorica, 21(1):39–60, 2001.

10. S. Khuller. Approximation algorithm for finding highly connected subgraphs. In
D. S. Hochbaum, editor, Chapter 6 in Approximation Algorithms For NP-hard

Problems. PWS, 1997.
11. J. Könemann and R. Ravi. A matter of degree: Improved approximation algo-

rithms for degree bounded minimum spanning trees. SIAM Journal on Computing,
31(3):1783–1793, 2002.

12. G. Kortsarz and Z. Nutov. Approximating minimum-cost connectivity problems.
In T. F. Gonzalez, editor, Chapter 58 in Approximation Algorithms and Meta-

heuristics. Chapman & Hall/CRC, 2007.
13. L. C. Lau, J. Naor, M. R. Salavatipour, and M. Singh. Survivable network design

with degree or order constraints. In STOC, pages 651–660, 2007.
14. V. Melkonian and E. Tardos. Algorithms for a network design problem with cross-

ing supermodular demands. Networks, 43(4):256–265, 2004.
15. R. Ravi, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, and H. B. H. III. Many

birds with one stone: Multi objective approximation algorithms. In STOC, pages
438–447, 1993.

16. A. Schrijver. Combinatorial Optimization, Polyhedra and Efficiency. Springer-
Verlag Berlin, Heidelberg New York, 2004.

17. M. Singh and L. C. Lau. Approximating minimum bounded degree spanning trees
to within one of optimal. In STOC, pages 661–670, 2007.

