
Additive Guarantees for Degree Bounded
Directed Network Design

Nikhil Bansal
IBM T. J. Watson Research
Yorktown Heights, NY, USA

nikhil@us.ibm.com

Rohit Khandekar
IBM T. J. Watson Research
Yorktown Heights,NY, USA

rohitk@us.ibm.com

Viswanath Nagarajan
∗

Tepper School of Business
CMU, Pittsburgh, PA, USA

viswa@cmu.edu

ABSTRACT
We present polynomial-time approximation algorithms for
some degree-bounded directed network design problems. Our
main result is for intersecting supermodular connectivity with
degree bounds: given a directed graph G = (V, E) with non-
negative edge-costs, a connectivity requirement specified by
an intersecting supermodular function f , and upper bounds
{av, bv}v∈V on in-degrees and out-degrees of vertices, find
a minimum-cost f -connected subgraph of G that satisfies
the degree bounds. We give a bicriteria approximation algo-
rithm that for any 0 ≤ ε ≤ 1

2
, computes an f -connected sub-

graph with in-degrees at most d av
1−ε

e+4, out-degrees at most

d bv
1−ε

e+ 4, and cost at most 1
ε

times the optimum. This in-
cludes, as a special case, the minimum-cost degree-bounded
arborescence problem. We also obtain similar results for the
(more general) class of crossing supermodular requirements.
Our result extends and improves the (3av + 4, 3bv + 4, 3)-
approximation of Lau et al. [13]. Setting ε = 0, our result
gives the first purely additive guarantee for the unweighted
versions of these problems. Our algorithm is based on round-
ing an LP relaxation for the problem.

We also prove that the above cost-degree trade-off (even
for the degree-bounded arborescence problem) is optimal rel-
ative to the natural LP relaxation. For every 0 < ε < 1, we
show an instance where any arborescence with out-degrees

at most bv
1−ε

+O(1) has cost at least 1−o(1)
ε

times the optimal
LP value.

For the special case of finding a minimum degree arbores-
cence (without costs), we give a stronger +2 additive approx-
imation. This improves on a result of Lau et al. [13] that
gives a 2∆∗ + 2 guarantee, and Klein et al. [11] that gives
a (1 + ε)∆∗ + O(log1+ε n) bound, where ∆∗ is the degree
of the optimal arborescence. As a corollary of our result,
we (almost) settle a conjecture of Bang-Jensen et al. [1] on
low-degree arborescences.

Our algorithms use the iterative rounding technique of

∗Supported in part by NSF grant CCF-0728841. Work done
while visiting IBM T.J. Watson Research Center.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’08,May 17–20, 2008, Victoria, British Columbia, Canada.
Copyright 2008 ACM 978-1-60558-047-0/08/05 ...$5.00.

Jain [9], which was used by Lau et al. [13] and Singh and
Lau [19] in the context of degree-bounded network design.
It is however non-trivial to extend these techniques to the
directed setting without incurring a multiplicative violation
in the degree bounds. This is due to the fact that known
polyhedral characterization of arborescences has the cut-
constraints which, along with degree-constraints, are unsuit-
able for arguing the existence of integral variables in a basic
feasible solution. We overcome this difficulty by enhancing
the iterative rounding steps and by means of stronger count-
ing arguments. Our counting technique is quite general, and
it also simplifies the proofs of many previous results.

We also apply the technique to undirected graphs. We
consider the minimum crossing spanning tree problem: given
an undirected edge-weighted graph G, edge-subsets {Ei}k

i=1,
and non-negative integers {bi}k

i=1, find a minimum-cost span-
ning tree (if it exists) in G that contains at most bi edges
from each set Ei. We obtain a +(r−1) additive approxima-
tion for this problem, when each edge lies in at most r sets;
this considerably improves the result of Bilò et al. [2]. A spe-
cial case of this problem is degree-bounded minimum span-
ning tree, and our result gives a substantially easier proof of
the recent +1 approximation of Singh and Lau [19].

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

General Terms
Algorithms

1. INTRODUCTION
The problem of finding a minimum spanning tree that

satisfies given degree bounds on vertices has received much
attention in the field of combinatorial optimization recently.
This problem was first studied by Fürer and Raghavachari [6].
Their motivation was to find a broadcast tree in a commu-
nication network along which the maximum overload of any
node, proportional to its degree, is minimized. Assuming
unit edge-costs, they gave a local-search based polynomial-
time algorithm for computing a spanning tree with maxi-
mum degree at most ∆∗+1 as long as there exists a spanning
tree with maximum degree at most ∆∗. This is essentially
the best possible since computing the optimum is NP-hard.

Earlier in this decade, a variety of techniques were devel-
oped in attempts to generalize this result to the case of arbi-
trary edge-weights. Ravi et al. [18], using a matching-based

augmentation technique, gave a bi-criteria approximation al-
gorithm that violates both the cost and the degree bounds by
a multiplicative logarithmic factor. Könemann and Ravi [12]
used a Lagrangian relaxation based method to get O(1) ap-
proximation on the cost while violating the degrees by a con-
stant factor plus an additive logarithmic term. Chaudhuri et
al. [3] based their algorithms on the augmenting-path and
push-relabel frameworks from the maximum flow problem
and obtained either logarithmic additive violation or con-
stant multiplicative violation on degrees. In a recent break-
through result, Goemans [8] presented an algorithm, based
on matroid intersection techniques, that computes a span-
ning tree with cost at most that of the optimum and with
degrees at most the bounds plus 2. This line of research re-
cently culminated in the“best possible”plus 1 result of Singh
and Lau [19]. Their algorithm used an iterative rounding ap-
proach of Jain [9] while obtaining a spanning tree with cost
at most that of the optimum while violating the degrees by
at most an additive +1 term.

In this paper, we consider directed network design prob-
lems with either in-degree or out-degree (or both) constraints
on the vertices. Directed graphs naturally arise in commu-
nication networks. In fact our original motivation was a
problem that arose at IBM in the context of maximizing
throughput in peer to peer networks. Here, we are given a
network where a root node r wishes to transmit packets to all
the nodes in the network. However, each node has limited
network resources which determines how many packets it
can transmit per unit time. It turns out that computing the
maximum achievable throughput of this network is equiva-
lent to determining the number of r-arborescences that can
be packed in the network subject to out-degree bounds.

As we discuss below, the directed setting turns out to be
substantially harder than the undirected setting, and much
fewer results are known in this case. First we give some
relevant definitions.

1.1 Preliminaries
A family A of subsets of V is intersecting (resp. crossing)

if S, T ∈ A with S ∩ T 6= ∅ (resp. S ∩ T, V \ (S ∪ T) 6= ∅)
implies S∩T, S∪T ∈ A. A set function f : A → Z+ is called
intersecting supermodular (resp. crossing supermodular), if
for any S, T ∈ A with S∩T 6= ∅ (resp. S∩T, V \(S∪T) 6= ∅),
it holds that f(S ∪ T) + f(S ∩ T) ≥ f(S) + f(T).

For a directed graph G = (V, E) and a subset S of ver-
tices, we use δ−G(S) (resp. δ+

G(S)) to denote the set of edges
entering (resp. leaving) S. When the graph G is clear from
the context, we drop the subscript G. Consider any non-
negative real-value assignment x : E → R+ to the edges; we
use x(δ−(S)) (resp. x(δ+(S))) to denote the total x-value
of the edges entering (resp. leaving) S.

Given a directed graph G = (V, E) and an intersecting (or
crossing) supermodular set function f : A → Z+ for some
set-family A, a subgraph H = (V, E′) of G is said to be
f-connected or satisfy requirement f if |δ−H(S)| ≥ f(S) for
every S ∈ A. In the basic directed network design prob-
lem [5, 16, 7], given an edge-weighted graph and an inter-
secting or crossing supermodular set function f , the goal
is to compute the minimum-cost f -connected subgraph. In
the degree-bounded variant of network design, there are ad-
ditional constraints bounding the in-degree and out-degree
at each vertex. The degree-bounded directed network design
problem is the following: given a directed graph G = (V, E)

with edge-costs c : E → R+, an intersecting (or crossing)
supermodular set function f and integers {av, bv}v∈V , com-
pute a minimum-cost f -connected subgraph in which each
vertex v has in-degree at most av and out-degree at most
bv. The intersecting supermodular requirements are gen-
eral enough to include the problem of packing k-edge dis-
joint arborescences, and choosing the minimum-cost edges
to increase the rooted connectivity of a directed graph [5,
16]. The crossing supermodular requirements include the
problem of computing a minimum cost k strongly-connected
spanning subgraph and several other problems on graphs
and hypergraphs, a detailed discussion of which can be found
in [7].

We shall consider bicriteria approximation algorithms for
which the output may violate the degree-constraints to some
extent and its cost is compared to the optimal solution that
does not violate any constraints. For functions α, β : Z+ →
Z+ and value ρ ≥ 1, an algorithm for degree-bounded di-
rected network design is called an (α, β, ρ) approximation if
for each instance 〈G, c, f, {av, bv}v∈V 〉, the algorithm returns
an f -connected subgraph H of cost at most ρ times the opti-
mal f -connected subgraph (that satisfies degree-constraints),
with |δ−H(v)| ≤ α(av) and |δ+

H(v)| ≤ β(bv) for all v ∈ V .
A family of sets {S1, . . . , Sk} is called laminar if for every

two sets, either they are disjoint or one is contained in the
other; i.e., for every 1 ≤ i, j ≤ k, i 6= j, either Si ∩ Sj = ∅
or Si ⊂ Sj or Sj ⊂ Si.

1.2 Our results and previous work
Degree-bounded arborescence problem (no costs).
Let G = (V, E) be a directed graph with root r, and let bv

be the bounds on out-degree for each vertex v. The goal in
the degree bounded arborescence problem is to compute an
(out-)arborescence from r that satisfies the degree bounds
or declare that it is infeasible. Since in any arborescence,
every vertex except the root has in-degree exactly one, we
do not consider bounds on in-degree here. This problem was
first considered by Fürer and Raghavachari [6] who gave a
polynomial time algorithm to compute an arborescence that
violates the degree bound by at most a logarithmic multi-
plicative factor. Klein et al. [11] gave a quasi-polynomial
time algorithm with degree violation (1+ ε)bv +O(log1+ε n)
for any ε > 0. Their algorithm starts with a solution and
successively applies local improvement steps to reduce high
degrees. Recently, Lau et al. [13], using an iterative round-
ing technique, obtained a polynomial-time algorithm that
computes an arborescence with degrees at most 2 · bv + 2.
We obtain the first result with only additive violation in the
degree bounds. In fact, assuming P 6= NP , our result is
almost best possible.

Theorem 1. There is a polynomial time algorithm that
given a directed graph with out-degree bounds {bv}v∈V , ei-
ther constructs an (out-)arborescence such that any vertex v
has out-degree at most bv + 2 or shows that no arborescence
satisfies the degree bounds exactly.

In particular, this implies a +2 additive approximation for
the minimum degree arborescence problem [11]: given a rooted
directed graph find an out-arborescence whose maximal out-
degree is as small as possible. Call a directed graph k-
arc-strong if every directed cut has at least k edges. Our
techniques also imply the following result: any k-arc-strong

graph G contains an arborescence T with δ+
T (v) ≤ d δ+

G
(v)

k
e+

2 for all vertices v in G. This (almost) settles the fol-
lowing conjecture, for which the previously best known re-
sult [1] was an existence of an arborescence T with δ+

T (v) ≤
δ+

G
(v)

2blog2 kc + blog2 kc.
Conjecture 1 (Bang-Jensen et al. [1]). Let G be k-

arc-strong directed graph. There exists a spanning arbores-

cence T with δ+
T (v) ≤ δ+

G
(v)

k
+ 1 for all vertices v in G.

General connectivity requirements with degree bounds.
We consider the network design problem in directed graphs
where the connectivity requirement is specified by an arbi-
trary intersecting supermodular function [5], and there are
both in-degree and out-degree bounds {(av, bv)}v∈V on ver-
tices. The goal here is to find a minimum-cost subgraph (if
it exists) that satisfies the connectivity requirement and de-
gree bounds on vertices. The previously best known results
for this problem are a (3av + 4, 3bv + 4, 3) approximation
in general, and a (2av + 2, 2bv + 2, 2) approximation for the
special case of 0-1 valued functions [13]. We extend and
improve this result as follows.

Theorem 2. For any ε ∈ [0, 1
2
], there is a polynomial

time (d av
1−ε

e + 4, d bv
1−ε

e + 4, 1
ε
) approximation algorithm for

degree bounded network design with intersecting supermodu-
lar requirement. Here 1

0
= ∞.

Note that setting ε = 0, gives the first additive guarantee
for the unweighted (no edge-costs) version of the these prob-
lems. As in Lau et al. [13], our algorithm is based on round-
ing the fractional solution to a natural linear relaxation of
the problem (described later); hence the cost guarantee is
relative to the optimal value of this LP relaxation.

Surprisingly, it also turns out that the above trade-off be-
tween the cost blowup and the degree-bound violation, is
optimal for the LP relaxation. In fact this integrality gap
holds even for the basic arborescence problem. The follow-
ing theorem captures this more formally (the O(1) and o(1)
terms below are independent of ε).

Theorem 3. For any 0 < ε < 1, there is an instance of
the minimum-cost degree-bounded arborescence problem such
that, any arborescence with out-degrees at most bv

(1−ε)
+O(1)

for all vertices v has cost at least (1−o(1)
ε

) times the optimal
LP value.

Note that our dependences on ε in Theorems 2 and 3 are
identical, (i.e. we do not have any hidden constant factors
in the O or Ω notation), and hence we obtain the optimum
possible trade-off between cost and degree violation (modulo
some additive terms). Theorem 3 suggests that computing
low-cost arborescence subject to degree bounds might be an
inherently harder problem in the directed setting unlike the
undirected case.

For degree-bounded network design under the more gen-
eral crossing supermodular connectivity requirements, Lau
et al. [13] gave an (3av + 4, 3bv + 4, 3) approximation algo-
rithm. We show that Theorem 2 can be used to obtain the
following trade-off in this case.

Theorem 4. For any ε ∈ [0, 1
2
], there is a polynomial

time (d av
1−ε

e+ 4 + fmax, d bv
1−ε

e+ 4 + fmax,
2
ε
) approximation

algorithm for degree-bounded network design with crossing
supermodular requirement f , where fmax = maxS⊆V f(S).

An interesting corollary of Theorems 2 and 4 is for the
unweighted case (no edge-costs). Setting ε = 0, we obtain
+4 additive approximation in degree for intersecting super-
modular requirements, and +(fmax+4) additive approxima-
tion for crossing supermodular requirements. Again, these
are the first purely additive guarantees in the unweighted
case. For example, this implies a +6 additive approxima-
tion for the degree-bounded 2-strongly-connected subgraph
problem.

Minimum crossing spanning tree problem (MCSP).
Given an undirected graph G = (V, E), costs ce ≥ 0 on
the edges e ∈ E, subsets of edges Ei ⊆ E for 1 ≤ i ≤ k,
and integers bi ≥ 0 for 1 ≤ i ≤ k, the MCSP is to find a
minimum-cost spanning tree (if it exists) in G that contains
at most bi edges from set Ei for 1 ≤ i ≤ k. We obtain the
following result for this problem.

Theorem 5. There is a polynomial-time algorithm that
for any instance 〈G, c, {Ei, bi}k

i=1〉 of the MCSP problem,
either computes a spanning tree of cost at most the opti-
mum and with at most bi + r − 1 edges from Ei (for all
1 ≤ i ≤ k); or shows that the instance is infeasible. Here
r = maxe∈E |{i | e ∈ Ei, 1 ≤ i ≤ k}|, is the maximum
number of sets {Ei} that any edge lies in.

This significantly improves on the results of Bilò et al. [2],
who consider unweighted instances in which all bi are equal
to b and find a spanning tree containing at most O(b·r log n)
edges in each set Ei. Theorem 5 has the following special
cases.

If the sets Ei are pairwise-disjoint, the MCSP problem can
be cast as finding a minimum-cost basis in the graphic ma-
troid for G that is independent in a partition matroid (where
an independent set must have at most bi elements from set
Ei). This problem is an instance of the matroid intersection
problem which is known to be solvable in polynomial time [4,
15].

If on the other hand, Ei denotes the set of edges inci-
dent to vertex i and bi denotes the degree bound on vertex
i, the MCSP problem is same as the degree-bounded min-
imum spanning tree problem. Our algorithm matches the
best possible +1 bound for this problem obtained by Singh
and Lau [19]; we note that our proof of Theorem 5 is consid-
erably simpler than that in [19]. In fact, Theorem 5 readily
extends to a generalization of MCSP: that of computing a
minimum-cost basis in a matroid subject to ‘degree bounds’.
This problem was recently considered by Király et al. [10]
who obtained similar guarantees.

1.3 Our approach
Our algorithms are based on the iterative rounding tech-

nique of Jain [9] which was recently used by Lau et al. [13]
and Singh and Lau [19] in the context of degree-bounded
network design problems. The iterative rounding technique,
which has been extensively used in network design problems,
proceeds as follows. First the problem is formulated as an
integer program, and an LP relaxation is obtained. An ex-
treme point solution, a.k.a. basic feasible solution, to this
linear program is then computed. The extreme point solu-
tions are proved to exhibit useful structural properties, for
example, the existence of an integral variable. Such vari-
ables are then fixed to their integral values and the resid-
ual problem is solved iteratively. For example, Singh and

Lau [19] use a clever counting argument to show that in any
extreme point solution to their LP formulation of degree-
bounded spanning tree problem, either there is an integral
edge-variable, or the degree bound constraint of some vertex
can be dropped without violating it by more than +1 in the
subsequent steps. The algorithm then either sets such an
edge to its integral value or drops such a constraint; thereby
reducing the size of the linear program and repeats.

Challenges in extension to the directed case. In the
directed setting, the arborescence polytope (without degree
bounds) has a linear formulation using the cut-covering con-
straints; it is not known to have a formulation similar to the
edge-subset formulation for spanning-trees, which was used
in [19] for the undirected case. One difficulty in working
with the cut formulation is that when used along with degree
bounds, the cut-constraints may alone contribute 2|V | − 1
tight linearly-independent constraints in a basic solution.
Using some additional arguments, Lau et al. [13] show that
either there exists an edge e with xe ≥ 1

2
or there is a ver-

tex v with small degree in the support. Based on this, their
algorithm iteratively does one of the following: round edge
e to 1 or drop the degree-constraint of vertex v. Since this
algorithm rounds 1

2
-edges to 1, the degree bounds may be

violated by a multiplicative factor of 2.
We overcome these difficulties by introducing additional

iterative rounding steps and stronger counting arguments,
and obtain improved guarantees. We continue to use the
idea of dropping degree constraints from Lau et al. [13]; so
at any iteration the degree bounds are present only at a sub-
set W of the vertices. The degree-bound relaxation step used
in Lau et al. [13] only considers vertices that have a small
degree in the support. We extend this step by considering
all vertices that have small spare (i.e., difference of support
degree and fractional degree). We note that such a relax-
ation step was also used in the +1 algorithm for bounded
degree MST [19], but not in the directed counterpart [13].
In addition, we also use some new relaxation steps that in-
volve treating edges leaving W vertices and non-W vertices
differently; this is the basis of the cost/degree trade-off. Fi-
nally, as is the case with iterative rounding algorithms, we
need a careful counting argument to show that a progress
is possible at every iteration. These arguments [9, 16, 13,
19] usually involve a token-assignment scheme that first dis-
tributes tokens to variables and then extracts tokens from
constraints. The novelty in our counting arguments is that
the token-assignment to each variable depends on the frac-
tional value of that variable in the basic solution. To the
best of our knowledge, the earlier proofs based on iterative
rounding used only integral token-assignment schemes. We
note that our token-assignment scheme is quite simple and
lends itself to global counting arguments.

We believe that our counting technique is fairly general.
In this paper we have applied them to (both directed and
undirected) degree bounded network design problems. Sub-
sequent to this work, Nagarajan et al. [17] employed a similar
token-assignment scheme for the undirected Steiner network
problem to obtain a substantially simpler proof of Jain’s 2-
approximation algorithm [9].

1.4 Organization
The rest of the paper is organized as follows. In Section 2,

we consider the degree-bounded arborescence problem (un-

• Set F ← ∅ and W ← V .

• If P (E, F, W) is infeasible, output “infeasible”.

• Repeat while E \ F 6= ∅
1. Compute a basic feasible solution x to P (E, F, W).

2. Remove from E all edges e ∈ E \ F with xe = 0.

3. Add to F all edges e ∈ E \ F with xe = 1.

4. For all v ∈ W such that there are at most
bv − |δ+

F (v)|+ 2 edges leaving v in E \ F ,

(a) Remove v from W .

(b) Add to F all out-going edges from v in E \ F .

• Output any (out-)arborescence rooted at r in F .

Figure 1: Algorithm for degree-bounded arborescence

weighted) and prove Theorem 1. This result contains the
basic ideas used in the rest of the paper as well. In Section 3,
we consider degree-bounded network design under intersect-
ing supermodular connectivity requirements and prove The-
orem 2. In Section 4, we complement our approximation
guarantee by showing a tight integrality gap of the natural
LP relaxation for even the minimum-cost degree-bounded
arborescence problem (Theorem 3). In Section 5 we con-
sider the undirected minimum crossing spanning tree prob-
lem and prove Theorem 5. Due to lack of space, we omit
the proof of Theorem 4.

2. DEGREE-BOUNDED ARBORESCENCE
PROBLEM

In this section, we prove Theorem 1. Our algorithm, given
in Figure 1, proceeds in several iterations. In a general itera-
tion of the algorithm, we denote E to be the candidate set of
edges, initially containing all the edges. The set F ⊆ E de-
notes the edges that we have already picked in our solution
and the set W ⊆ V denotes the vertices on which the out-
degree bounds constraints are present. Initially, F = ∅ and
W = V . In any iteration, we work with the following linear
program with variables xe for e ∈ E \ F . Let E′ = E \ F .
For brevity, we use δ− (resp. δ+) to denote δ−E′ (resp. δ+

E′).

P (E, F, W) :

x(δ−(S)) ≥ 1− |δ−F (S)| ∀S ⊆ V \ {r} (cut-constraints)

x(δ+(v)) ≤ bv − |δ+
F (v)| ∀v ∈ W (degree-constraints)

0 ≤ xe ≤ 1 ∀e ∈ E′ = E \ F

In the beginning of the iteration, we compute a basic feasible
solution x in the polytope P (E, F, W) using standard linear
programming techniques. We then update the sets E, F ,
and W as explained in Figure 1. The algorithm, in the end,
outputs any arborescence contained in the set of edges F .

The following lemma is easily seen, and we omit the proof.

Lemma 1. Assume that P (E, F, W) is feasible at the be-
ginning of the algorithm. If the algorithm terminates, it
outputs an arborescence T such that |δ+

T (v)| ≤ bv + 2 for
all v ∈ V .

The rest of the section is devoted to proving that the al-
gorithm indeed terminates. We show that if |E| and |F | do
not change in Steps 2 and 3, then |W | must decrease in this
iteration. Assume that the conditions in Steps 2 and 3 do

not hold, i.e., all e ∈ E′ satisfy that 0 < xe < 1. In such a
case, all the tight constraints in the basic feasible solution
x come from the cut-constraints and the degree-constraints.
Moreover, since all edges leaving v are added to F as soon as
v is removed from W , every edge in E \F must be out-going
from a W -vertex.1 The following lemma is standard and ob-
tained by using the fact that the RHS of the cut-constraints
is a supermodular set function.

Lemma 2 ([13]). For any basic solution x to P (E, F, W)
such that 0 < xe < 1 for all e ∈ E′, there exists a set T ⊆ W
and a laminar family L of subsets of V such that x is the
unique solution to the linear system:

x(δ−(S)) = 1 ∀S ∈ L,
x(δ+(v)) = bv − |δ+

F (v)| ∀v ∈ T.

Furthermore, the following two conditions are satisfied

1. The characteristic vectors {χδ−(S) | S ∈ L}∪{χδ+(v) |
v ∈ T} are linearly independent.

2. The size of the support is equal to |E′| = |T |+ |L|.

For v ∈ W , we define its spare, Sp(v), as the difference
between its degree in the support and its fractional degree:

Sp(v) =
X

e∈δ+(v)

(1− xe) = |δ+(v)| −
X

e∈δ+(v)

xe.

For v ∈ W , let dv = bv−|δ+
F (v)| be the current degree bound

on v. Since xe is a feasible LP solution,
P

e∈δ+(v) xe ≤ dv

and hence Sp(v) ≥ |δ+(v)| − dv. Thus Sp(v) is an upper
bound on the degree violation of vertex v if its degree bound
is dropped.

To complete the proof of Theorem 1, we prove the follow-
ing lemma that shows that if neither Step 2 nor Step 3 in
the algorithm apply, then Step 4 applies.

Claim 1. If neither Step 2 nor Step 3 is applicable, then
there exists v ∈ W such that |δ+(v)| − dv ≤ 2.

Proof. We first argue that it is enough to show that

|L| <
X

e∈E′
xe + 2|W |. (1)

Suppose (1) holds. Consider the quantity
P

v∈W Sp(v). As
each (u, v) in E′ has its tail u in W , it follows that

P
v∈W Sp(v) =

|E′| −Pe∈E′ xe. Since Sp(v) ≥ δ+(v)− dv, we have
X
v∈W

(δ+(v)− dv) ≤ |E′| −
X

e∈E′
xe = |L|+ |T | −

X

e∈E′
xe

(by Lemma 2)

≤ |L|+ |W | −
X

e∈E′
xe < 3|W |

(by inequality (1))

This in turn implies that there exists v ∈ W such that
|δ+(v)| − dv < 3. Since |δ+(v)| − dv is an integer, it must be
at most 2.

The proof of (1) is based on a counting argument, as is
common in iterative rounding. We assign xe units of “to-
kens” to each e ∈ E′ and two “tokens” to each v ∈ W . We
shall show that these tokens can be redistributed among

1A vertex in W is henceforth called a W -vertex.

the sets S ∈ L such that each set in L gets at least one
token, and moreover one token is unused, thereby proving
that |L| is strictly smaller than the total number of tokensP

e∈E′ xe + 2|W |.
The laminar family L naturally defines a forest T with

S ∈ L as nodes2. We call a node S ∈ L marked if there
is some vertex w ∈ W ∩ S; or unmarked otherwise. Recall
that every edge in E′ leaves a W -vertex; hence if S is an
unmarked node, no edge of E′ leaves a vertex in S and in
particular, no edge of E′ is contained in S. From Lemma 2,
for any set S ∈ L, x(δ−(S)) = 1. The assignment of tokens
to nodes of T is done as follows.

Leaf nodes in T . Let S ∈ L be a leaf in T . Recall that
x(δ−(S)) = 1. The tokens of edges e ∈ δ−(S), which sum
up to 1, are assigned to S.

Unmarked non-leaf nodes in T . We in fact show that
such nodes do not exist in T at all. Let on the contrary,
S ∈ L be such a node, and C1, · · · , Ct ⊂ S with t ≥ 1 be
its children in T . Since S is unmarked, no edge of E′ lies
completely inside S, hence δ−(Ci) ⊆ δ−(S) for all i, and thusPt

i=1 x(δ−(Ci)) ≤ x(δ−(S)). As x(δ−(S)) = x(δ−(Ci)) = 1
for all i, this implies that t = 1 and χδ−(S) = χδ−(C1). But
this contradicts the linear independence in Lemma 2.

Marked nodes in T . Let M ⊆ T denote the sub-forest
induced on the marked nodes in T . Call a node S ∈ M
high-degree if S has at least 2 children in M; low-degree if S
has exactly 1 child in M; all other nodes are leaves in M.

Since leaves in M correspond to disjoint sets, every such
node contains at least one distinct W -vertex. We next argue
that each low-degree node in M also contains a distinct W -
vertex, distinct also from the W -vertices contained in the
leaves of M. Let S ∈ M be a low-degree node in M, and
C ∈ M be its unique child in M. To establish the above
property, it is enough to show that W ∩(S\C) 6= ∅. Suppose
this is not the case. As S \ C does not contain any W -
vertex, there are no edges from S \ C to C; so δ−(C) ⊆
δ−(S). As x(δ−(C)) = x(δ−(S)) = 1, we get χδ−(S) =
χδ−(C) contradicting the linear independence.

Thus we proved that the total number of leaves and low-
degree vertices in M is at most |W |. Now observe that the
number of high-degree nodes in M is strictly less than the
number of leaves in M. Therefore the total number of nodes
in M is strictly less than 2|W |. Assign each node in M a
distinct token out of 2|W | tokens from vertices in W leaving
at least one token unassigned.

By the token assignment given above, each set in L gets at
least one token with one token unassigned. Thus the proof
is complete.

Our technique implies the following slightly weaker version
of Conjecture 1 of Bang-Jensen et al. [1].

Corollary 1. Let G = (V, E) be a k-arc-strong graph,
i.e., a directed graph in which every directed cut has at least
k edges. For any r ∈ V , there exists an r-rooted arborescence

T satisfying δ+
T (v) ≤ d δ+

G
(v)

k
e+ 2 for every v ∈ V .

Proof. Consider the degree-bounded arborescence prob-
lem on G with any root r ∈ V and degree bounds bv =

2Throughout, we use node to refer to a vertex in the laminar
tree, and vertex refers to vertices in G.

dδ+
G(v)/ke at each v ∈ V . It is clear that x = 1

k
·χE is a fea-

sible fractional solution to the linear relaxation P (E, ∅, V) of
this problem. Thus our algorithm obtains an arborescence
rooted at r with the desired property.

3. INTERSECTING SUPERMODULAR CON-
NECTIVITY WITH COSTS

We now consider degree-bounded network design under
an intersecting supermodular connectivity requirement, and
prove Theorem 2. The algorithm is again iterative. Let
F ⊆ E denote the set of edges that have been fixed to value
1, A ⊆ V the vertices for which there is an in-degree bound,
and B ⊆ V the vertices for which there is an out-degree
bound at some generic iteration. Consider the following LP
which we refer to as P (E, F, A, B).

min
P

e∈E\F cexe

s.t.
x(δ−(S)) ≥ f(S)− |δ−F (S)| ∀S ⊆ V
x(δ−(v)) ≤ av − (1− ε)|δ−F (v)| ∀v ∈ A
x(δ+(v)) ≤ bv − (1− ε)|δ+

F (v)| ∀v ∈ B
0 ≤ xe ≤ 1 ∀e ∈ E \ F

(2)

In such an iteration, the algorithm computes an optimal
basic feasible solution x. Let E′ = E \ F . The algorithm
works with a parameter 0 ≤ ε ≤ 1/2 and performs one of
the following steps in each iteration where E′ 6= ∅:

1. If there is an edge e ∈ E′ with xe = 0, set E ← E\{e}.
2. If there is an edge e ∈ E′ with xe ≥ 1 − ε, set F ←

F ∪ {e}.
3. If there is an edge e = (u, v) ∈ E′ with u /∈ B and

v /∈ A and xe ≥ ε, set F ← F ∪ {e}.
4. If there is v ∈ A with strictly less than av − (1 −

ε)|δ−F (v)|+ 5 edges in E′ entering it, set A ← A \ {v}.
5. If there is v ∈ B with strictly less than bv − (1 −

ε)|δ+
F (v)|+ 5 edges in E′ leaving it, set B ← B \ {v}.

It is easily verified that if at least one of these conditions
holds at each iteration, then the algorithm results in a so-
lution F satisfying the connectivity requirement, of cost at
most 1

ε
times the optimal, while having in-degree at most

d av
1−ε

e+ 4 and out-degree at most d bv
1−ε

e+ 4 at each vertex
v ∈ V . The rest of this section proves that one of the above
conditions is true in any iteration. In particular, we show
that if none of the conditions (1)-(3) are satisfied in some
iteration, then at least one of (4) and (5) must be true. To
this end, fix an iteration and assume that none of (1)-(3) are
satisfied. As in the previous section, since conditions (1) and
(2) do not hold, all the tight constraints in a basic feasible
solution x come from the cut-constraints and the degree-
constraints. Based on standard uncrossing arguments, we
have the following.

Lemma 3 ([13]). For any basic solution x to P (E, F, A, B)
such that 0 < xe < 1 for all e ∈ E′, there exist sets T ′ ⊆ A,
T ′′ ⊆ B, and a laminar family L of subsets of V such that
x is the unique solution to the linear system:

x(δ−(v)) = av − (1− ε)|δ−F (v)| ∀v ∈ T ′

x(δ+(v)) = bv − (1− ε)|δ+
F (v)| ∀v ∈ T ′′

x(δ−(S)) = f(S)− |δ−F (S)| ∀S ∈ L
Furthermore, the following two conditions hold:

1. For every S ∈ L, f(S)− |δ−F (S)| ≥ 1 and is integral.

2. The characteristic vectors {χδ−(S) | S ∈ L}∪{χδ−(v) |
v ∈ T ′} ∪ {χδ+(v) | v ∈ T ′′} are linearly independent;
and

3. The size of the support |E′| = |T ′|+ |T ′′|+ |L|.
Let W = A ∪ B. We now classify the various types of

edges in the support E′:

1. Let E0 be the set of edges (u, v) ∈ E′ such that u /∈ W
and v /∈ W .

2. Let E+ be the set of edges (u, v) ∈ E′ such that u ∈ W
and v /∈ W . Similarly, let E− denote the set of edges
for which v ∈ W but u /∈ W .

3. Let E± be the remaining edges in E′ that have both
endpoints in W .

For an edge e, let Sp(e) = 1 − xe. For a set H of edges,
define Sp(H) =

P
e∈H(1 − xe) and Val(H) =

P
e∈H xe.

Abusing the notation somewhat, for subsets A, B ⊆ V ,
we also define Sp(A) =

P
e=(u,v):v∈A Sp(e) and Sp(B) =P

e=(u,v):u∈B Sp(e). Note that Sp(A) ≤ Sp(E−) + Sp(E±)

and Sp(B) ≤ Sp(E+) + Sp(E±) and hence,

Sp(A) + Sp(B) ≤ Sp(E+) + Sp(E−) + 2Sp(E±) (3)

Lemma 4. To prove Theorem 2, it suffices to show that

2|L| < 2|E0|+ |E+|+ Val(E+) + |E−|+ Val(E−)
+Val(E±) + 3|W | (4)

Proof. Since |E| = |L| + |T ′| + |T ′′| ≤ |L| + |A| + |B|
and |W | ≤ |A|+ |B|, the inequality (4) implies that

2|E| < 2|E0|+ |E+|+ Val(E+) + |E−|+ Val(E−)
+Val(E±) + 5|A|+ 5|B| (5)

As |E| = |E0| + |E+| + |E−| + |E±| and Sp(X) = |X| −
Val(X) ≤ |X| for any subset of edges X, the inequalities (5)
and (3) imply that

Sp(A)+Sp(B) ≤ Sp(E+)+Sp(E−)+2Sp(E±) < 5|A|+5|B|.
This implies that either there is v ∈ A with

P
e∈δ−(v) Sp(e) <

5 or there is v ∈ B with
P

e∈δ+(v) Sp(e) < 5. This, in turn,

implies that either the condition in step (4) holds for some
v ∈ A or the condition in step (5) holds for some v ∈ B,
which proves Theorem 2.

3.1 Token assignment: Proof of inequality (4)
The proof of (4) is done via a “token” assignment scheme.

We give some tokens to the edges in E′ and vertices in W so
that the total number of tokens equals the RHS of (4). We
then reassign these tokens to obtain at least 2 tokens per
node in L; leaving at least one token unassigned, thereby
proving (4).

We give 2 tokens to each edge e = (u, v) ∈ E0. Of these,
1 + xe units “lie” at the head v, and 1 − xe tokens “lie” in
the “middle” of the edge. We give 1+xe tokens to each edge
e ∈ E+∪E−. For an edge (u, v) ∈ E+, the 1+xe tokens lie at
the head v. For an edge (u, v) ∈ E−, the xe tokens lie at the
head v and 1 token lies in the middle. The remaining edges
e = (u, v) ∈ E± are given xe tokens that lie at the head v.
We also give 3 tokens to each W -vertex. The tokens lying at

a vertex are initially assigned to the inclusion-wise minimal
set in L that contains that vertex; while the tokens in the
middle of an edge are assigned to the inclusion-wise minimal
set in L that contains both end-points of that edge.

We call a node S ∈ L marked if W ∩ S 6= ∅; or unmarked
otherwise. Note that for any S ∈ L, we have x(δ−(S)) ≥ 1
and is an integer. The reassignment of tokens to nodes of L
proceeds using the following steps.

3.1.1 Unmarked leaf nodes
Let S ∈ L be such a node. Since x(δ−(S)) ≥ 1, there

are at least two edges of E′ entering S (as each edge has
xe < 1). Assign the tokens at the heads of these edges to S.
As S is unmarked, these must be edges of type E0 or E+,
and S receives at least 2 + x(δ−(S)) ≥ 3 tokens. One extra
token of these nodes is going to be reassigned to other nodes
in L as described later.

3.1.2 Unmarked non-leaf nodes
Let S ∈ L be such a node, and C1, · · · , Ct ⊂ S its children.

Let z = x(E′(V \ S, S \ ∪t
i=1Ci)) denote the total x-value

entering S \ ∪t
i=1Ci from outside S.

We first consider the case when z > 0. Note that edges in
E′(V \ S, S \ ∪t

i=1Ci) lie either in E0 or E+, thus if z > 0,
then they contribute at least 1 + z tokens to S. Thus, if
z ≥ 1, then S obtains two tokens from them. Now, suppose
that z < 1. By integrality of the tight cuts, it follows thatPt

i=1 x(E′(S \Ci, Ci)) ≥ z. Since these are all edges in E0,
they contribute at least 1 − z middle tokens to S. Thus S
gets at least (1 + z) + (1− z) = 2 tokens.

We now consider the case z = 0. By linear independence
it follows that

P
i χδ−(Ci)

6= χδ−(S). By the integrality of
connectivity requirements and since z = 0, it follows thatP

i x(δ−(Ci))− x(δ−(S)) ≥ 1 and is an integer. Since each
edge e ∈ ∪t

i=1E
′(S\Ci, Ci) satisfies xe < ε ≤ 1/2, it is easily

verified that the middle tokens of these edges contribute at
least 2 tokens to S.

3.1.3 Marked nodes
Let M ⊆ L denote the laminar family consisting of only

marked nodes. Call a node S ∈ M high-degree if it has at
least 2 children in M; low-degree if it has exactly 1 child in
M; and leaf if it has no children in M. We now show how
to assign tokens to each of these nodes.

High-degree nodes. Note that the number of high-degree
nodes in M is strictly less than the number of leaf-nodes
in M. Arbitrarily assign each high-degree node in M two
tokens from a distinct W -vertex (in a distinct leaf node of
M).

Leaf-nodes. For each leaf node S in M, we assign 1 token
from some W -vertex contained in it. For the remaining to-
ken, we argue as follows: If S is also a leaf in L, then S has
x(δ−(S)) ≥ 1 and hence S receives at least 1 unit of tokens
from edges in δ−(S) (since every edge carries at least xe to-
kens at its head). If S is not a leaf in L, then consider the
subtree rooted S. This subtree has at least one unmarked
leaf node. Since each unmarked leaf node has at least 3 to-
kens assigned to it thus far, S borrows one token arbitrarily
from one of these nodes. Note that any unmarked leaf node
can be charged at most once.

Also note that each W -vertex has been charged at most 3
tokens so far.

Low-degree marked nodes. Let S ∈ M be such a node,
and C ∈M be its unique child.

Suppose that W ∩ (S \ C) 6= ∅, and w ∈ W ∩ (S \ C) be
such a vertex. As no node of M is contained in S \ C, S is
the smallest set in M that contains w. Assign node S two
tokens from vertex w. Note that this vertex w cannot be
charged by more than one such set S in this step. Moreover,
w could not have been used in the earlier charging to W -
vertices since it is not contained in any leaf node of M.

Henceforth we assume that W ∩ (S \C) = ∅. Let r denote
the number of unmarked leaves of L contained in S \ C.
Consider the following cases:

1. r = 0. In this case, there are no unmarked nodes
in S \ C. Let z = x(E′(V \ S, S \ C)) denote the
total x-value entering S \ C from outside S. We first
consider the case when z = 0. By linear independence
it follows that χδ−(C) 6= χδ−(S). By the integrality of
connectivity requirements and since z = 0, it follows
that x(δ−(C))− x(δ−(S)) ≥ 1 is an integer. Consider
the edges E′(S \C, C). They must be either E0 or E−
edges as S\C does not have a W -vertex. If they are all
E0 edges, then they must contribute at least 2 tokens
to S. If at least two of them are E− edges, they also
contribute at least two tokens to S. If there is exactly
one E− edge, then it has x-value strictly less than 1−ε.
Since edges in E0 have x-value less than ε, we need at
least two more edges from E0 (and each has at least 1

2

middle tokens) to ensure that x(δ−(C))− x(δ−(S)) ≥
1. These edges together provide the two tokens for S.

We now consider the case when z > 0. The edges in
E′(V \ S, S \ C) are either E0 or E+ edges, so they
contribute at least 1 + z tokens to S. Thus, if z ≥ 1,
then S obtains two tokens from them. Now, suppose
that z < 1. By integrality of the tight cuts, it follows
that at least z amount of x-value must also enter C
from S\C. Since these are either E0 or E− edges, they
contribute at least 1− z tokens to S. Thus together S
has at least (1 + z) + (1− z) = 2 tokens.

2. r ≥ 2. Consider the unmarked leaf nodes in L con-
tained in S \ C. Note that each of them has been as-
signed at least 3 tokens thus far (they could not have
given a token to marked node in previous steps). S is
assigned 2 tokens by borrowing 1 token each from any
two unmarked leaf nodes in S \ C.

3. r = 1. In this case, L∩(S\C) corresponds to a chain of
k ≥ 1 unmarked nodes D = {Dk ⊆ Dk−1 ⊆ · · · ⊆ D1}.
Let D = D1 be the unmarked child of S. We first
consider the case that there is an edge e from V \S to
S \ (C ∪D). Here, the edge e provides at least 1 token
to S. For the remaining token, we observe that the
subtree rooted at D in L has at least one unmarked
leaf (node Dk). This node still has at least 3 tokens
since none of its tokens could have been used for earlier
reassignments. Thus S can borrow 1 token from D and
get at least 2 tokens.

Henceforth, we assume that all edges from V \S enter
either C or D. Suppose that some unmarked node (say
Di) in the chain D has a cut value more than 1 (i.e.,
x(δ−(Di)) = f(Di) − |δ−F (Di)| ≥ 2). In this case, we
use the following Claim which is proved at the end of
this section.

Claim 2. Let D = {Dk ⊆ Dk−1 ⊆ · · · ⊆ D1} be
a chain of unmarked nodes with Dk being a leaf node.
Then a total of at least 2k + x(δ−(D1)) tokens are as-
signed to nodes of D.

Applying Claim 2 to the chain D′ = {Di, · · · , Dk}, we
obtain that at least 2(k− i+1)+2 tokens are assigned
to the nodes of D′. Thus there are at least 2 extra
tokens, which can be reassigned to node S (note that
these unmarked nodes have not been used in earlier
reassignments).

In the remaining, we assume that all nodes in D have
cut value exactly 1. Let z = x(E′(V \ S, D)) be the
x-value entering D from V \ S; note that 0 ≤ z ≤ 1
since D has cut value 1. We consider the following four
cases.

Case 1: z = 0. In this case, δ−(S) ⊆ δ−(C). From
linear independence and integrality of the cut values,
this implies x(E′(S \ C, C)) ≥ 1. Hence as in step 1,
S obtains at least 2 middle tokens from E′(S \ C, C)
(which are type E0 or E− edges).

Case 2: 0 < z < ε. In this case, x(E′(S \ D, D)) =
1 − z > 1 − ε. Since every edge has x-value less than
1−ε, |E′(S \D, D)| ≥ 2. Also, |E′(V \S, D)| ≥ 1 since
z > 0. Thus |δ−(D)| ≥ 3. We now use the following
Claim which is again proved at the end of this section.

Claim 3. Let D = {Dk ⊆ Dk−1 ⊆ · · · ⊆ D1} be
a chain of unmarked nodes with Dk being a leaf node,
such that each node Di has cut value x(δ−(Di)) = 1.
Then a total of at least 2(k− 1) + |δ−(D1)|+ 1 tokens
are assigned to nodes of D.

Now applying Claim 3 to chain D, there are at least
2k + 2 tokens assigned to the nodes of D. Since there
are 2 extra tokens, these can be reassigned to S.

Case 3: ε ≤ z < 1. From the integrality of the cut
values of S and C, x(E′(S \C, C)) ≥ z ≥ ε. Since each
edge in E′(S \C, C) is type E0 or E−, E′(S \C, C) has
either at least one E− edge or at least two E0 edges
(each has x-value less than ε). In either case S obtains
at least 1 unit of middle tokens. Borrowing one token
from the unmarked leaf Dk, S is assigned at least 2
tokens.

Case 4: z = 1. Here it must be that x(E′(S \C, C)) ≥
1: this follows from the linear independence and inte-
grality of cuts S, C, D and the fact that x(δ−(D)) = 1.
As in step 1, S has at least 2 units of middle tokens.

Thus we have shown that (4) holds which implies the result.

Proof of Claim 2. Note that every edge (u, v) induced on
D1 is an E0 edge and has 2 tokens: we think of it having one
token at each of u and v. Every edge (u, v) in δ−(D1) is of
type E0 or E+ and has 1+x(u,v) tokens at v ∈ D1: we think

of x(u,v) units contributing to the x(δ−(D1)) term and the
remaining one token lying at v. It now suffices to show that
the total number of end-points of the support E′ inside D1

is at least 2k. We claim that for every 1 ≤ i ≤ k, Di \Di+1

has at least 2 end-points (setting Dk+1 = ∅). First consider
Dk: since x(δ−(Dk)) ≥ 1 there are at least 2 edges entering
Dk that contribute the 2 (head) end-points. Now consider
node Di and its child Di+1: let z = x(V \Di, Di \Di+1) and
consider the following cases.

1. z = 0. Due to linear independence and integrality of
Di and Di+1, we have x(Di \Di+1, Di+1) ≥ 1, which
gives at least 2 (tail) end-points.

2. 0 < z < 1. This immediately gives at least 1 (head)
end-point. Also we have x(Di \Di+1, Di+1) ≥ z (same
reasons as above) which gives at least 1 (tail) end-
point.

3. z ≥ 1. Here |E′(V \Di, Di \Di+1)| ≥ 2 which gives at
least 2 (head) end-points.

In each case, we have at least 2 end-points in Di \ Di+1.
Thus we have the claim.

Proof of Claim 3. We first show that |E′(Di\Di+1, Di+1)|
≥ 1 for all 1 ≤ i < k. Consider any node Di (1 ≤ i < k)
and its child Di+1. Since x(δ−(Di)) = x(δ−(Di+1)) = 1,
using linear independence it follows that there must be an
edge in E′(Di \Di+1, Di+1). These k−1 edges (all type E0)
provide 2(k − 1) tokens. Together with the tokens on edges
of δ−(D1) (that total to at least |δ−(D1)|+1 since each such
edge contributes (1 + xe) tokens), we have the claim.

4. INTEGRALITY GAP INSTANCE
We now prove Theorem 3. Given an arbitrarily small but

fixed constant ε ∈ (0, 1), set δ = ε+εc where c is a sufficiently
large constant independent of ε. Consider a directed graph
G(δ) constructed as follows. See Figure 2 for clarity. Start
with a complete k-ary outward directed tree T rooted at
vertex r, with t levels (the solid edges in Figure 2), where
we set k = 1/δ2c and t = cδ−c−1 ln(2/δ). These tree edges,
called T -edges, have cost 0. Consider the natural drawing
of the tree on the plane (as in Figure 2) and label the leaves
from right to left as 1, . . . , kt. The vertices of T are naturally
partitioned into levels 0, 1, . . . , t such that the root is at level
0 and the leaves are at level t. We also label the vertices on
level i as 1, . . . , ki in the right to left order. For a vertex v,
let Tv denote the subtree rooted at v and let rv and lv denote
the smallest and largest indices of leaves in Tv (formally if
v is the jth node from the right on level i, then lv = jkt−i

and rv = (j − 1)kt−i + 1).
We add the following additional edges to obtain G(δ). For

each internal vertex v, we add an edge from the leaf lv to
v (these are the light dotted edges in Figure 2). All these
edges also have cost 0. Finally, we add a path from the root,
visiting the leaves in the order 1, . . . , kt (these are the heavy
dashed edges) and each of these edges has cost 1.

Consider the problem of constructing the minimum-cost
arborescence rooted at r, where each internal vertex has an
upper bound of b = (1− δ)k on the out-degree. Consider a
fractional assignment to the edges where each (solid) edge
in T has value xe = 1 − δ and every other edge has value
xe = δ. Observe that each vertex receives 1 unit of flow
from the root and the fractional out-degree of each internal
vertex is (1 − δ)k and hence this is a feasible LP solution
with cost LP ∗ = δkt.

We now show that any integral solution I where the degree
at each internal vertex is at most b/(1− ε) + O(1) has cost
at least (1 − o(1))LP ∗/ε. The crucial observation is the
following.

Proposition 1. Suppose a leaf ` does not have a path
from root to itself in I using only T -edges, then the edge
(`− 1, `) must necessarily lie in I.

r

23k
t 1

Figure 2: The integrality gap instance with k = 3,
t = 3. Solid arcs (on complete t-level k-ary tree T)
have cost 0 and LP-value 1 − δ. Dotted arcs have
cost 0 and LP-value δ. Heavy dashed arcs have cost
1 and LP-value δ.

Proof. To see this, consider the unique path from r to `
in T and let (u, v) be some edge along this path that does not
lie in I (such an edge must exist since ` is unreachable from
r using T -edges). Let L denote the set of leaves {`, . . . , lv},
and let Sv denote the set of all nodes in Tv from which some
vertex in L can be reached using T -edges. We claim that
the (heavy dashed) edge (`− 1, `) is only edge in I entering
the set Sv. Indeed, no T -edge enters Sv since (u, v) /∈ I.
Moreover, no dotted edge enters Sv since such edge must be
of the form (`′, w) where `′ is a leaf not in Sv and hence
`′ ∈ {rv, . . . , ` − 1} and w ∈ Sv. Now by the construction
of dotted edges in G(δ), this means that `′ = lw, and hence
`w ∈ {rv, . . . , ` − 1}. But the only leaves reachable by T -
edges from w have indices at most `w which is at most `−1;
this implies that none of the leaves in L can be reached by
w which contradicts that w ∈ Sv. Thus, (`− 1, `) is unique
edge entering Sv and must necessarily lie in I.

To finish the proof, consider the solution I where each
internal vertex has degree at most b/(1 − ε) + O(1) = (1 −
δ)k/(1 − ε) + O(1) = (1 − εc/(1 − ε))k + O(1) which is at
most (1−δc+1)k. Thus the total number of leaves that have
a path from root r using T -edges is at most (1− δc+1)tkt ≤
(δ/2)ckt < εckt. Thus by the above claim, at least (1−εc)kt

cost 1 edges must lie in I, which implies that the total cost is
at least (1−εc)kt = ((1−εc)LP ∗)/δ = (1−εc)LP ∗/(ε+εc) ≥
(1 − 2εc−1)LP ∗/ε. Since c is arbitrarily large, this implies
the result.

From the above example, we see that to achieve a purely
additive O(1) guarantee for degree using the LP (2), the cost
has to be violated by a factor at least Ω(log n

log log n
), where n

is the number of vertices in the graph.

5. GENERALIZED MINIMUM CROSSING
SPANNING TREE PROBLEM

In this section, we prove Theorem 5. Our algorithm is
again based on iterative rounding. Consider a general it-
eration. Let E denote the candidate edges which are not
yet discarded, let F ⊆ E denote the set of edges that we
have already picked in our solution, and let W ⊆ {i | 1 ≤
i ≤ k} denote the crossing constraints that we have not yet
dropped. In the beginning E is the entire edge-set, F = ∅,
and W = {i | 1 ≤ i ≤ k}. In a general iteration, we work

with the following linear relaxation P (E, F, W) with vari-
ables xe for e ∈ E′ = E \ F .

min
P

e∈E′ ce · xe

s.t.
x(E′(V)) = V − 1− |F (V)|
x(E′(S)) ≤ S − 1− |F (S)| ∀S : 2 ≤ |S| ≤ |V | − 1
x(E′ ∩ Ei) ≤ bi − |F ∩ Ei| ∀i ∈ W
0 ≤ xe ≤ 1 ∀e ∈ E′ = E − F

where H(S) (for H ⊆ E and S ⊆ V) is the set of edges in H
with both end-points in S. In this iteration, the algorithm
computes a basic feasible solution x to P (E, F, W) and per-
forms one of the following steps while E′ = E \ F 6= ∅:

1. If there is an edge e ∈ E′ with xe = 0, set E ← E\{e}.
2. If there is an edge e ∈ E′ with xe = 1, set F ← F∪{e}.
3. If for some i ∈ W , |E′ ∩Ei| ≤ bi− |F ∩Ei|+ r− 1, i.e.
|E ∩ Ei| ≤ bi + r − 1, set W ← W \ {i}.

It is clear that if the algorithm terminates, it terminates
with a set F containing a spanning tree with cost at most
the optimum and which contains at most bi + r − 1 edges
from Ei for 1 ≤ i ≤ k.

We now argue that in each iteration, one of the above
steps is always applicable. The following lemma follows by
uncrossing [8, 19].

Lemma 5. For any basic solution x to P (E, F, W) such
that 0 < xe < 1 for all e ∈ E′, there exists a set T ⊆ W and
a laminar family L of subsets of V such that x is the unique
solution to the linear system:

x(E′(S)) = |S| − 1− |F (S)| ∀S ∈ L
x(E′ ∩ Ei) = bi − |F ∩ Ei| ∀i ∈ T

Furthermore, the characteristic vectors {χE′(S) | S ∈ L} ∪
{χE′∩Ei

| i ∈ T} are linearly independent, and the size of
the support |E′| = |T |+ |L|.

Assume that the conditions in steps (1) and (2) do not
hold; then we prove that step (3) holds. The key component
of our proof is the following lemma which is proved by a
simple counting argument.

Claim 4. We have |L| ≤ x(E′(V)). Moreover the equal-
ity holds if and only if each edge in E′ is contained in some
inclusion-wise maximal set S ∈ L.

Proof. Suppose each edge e ∈ E′ is given xe tokens.
These tokens are assigned to the sets S ∈ L as follows. An
edge e is said to belong to S if S is the inclusion-wise minimal
set in L that contains both the end-points of e. If e belongs
to S, then xe tokens are assigned to S. We argue that each
set in the laminar family is assigned a total of unit tokens,
thereby proving the claim.

Since xe > 0 for all e ∈ E′, each set S ∈ L has the RHS
|S| − 1 − |F (S)| at least 1, and hence x(E′(S)) ≥ 1. This
gives every leaf set S ∈ L at least a total of unit tokens. Now
consider a non-leaf set S ∈ L with t children C1, · · · , Ct ∈ L.
Now χE′(S) =

Pt
j=1 χE′(Cj) +

P{χe | e ∈ E′ belongs to S}.
Since χE′(S)∪{χE′(Cj)}t

j=1 is a linearly independent set, we

have {e | e ∈ E′ belongs to S} 6= ∅. So, the RHS |S| − 1 −
|F (S)| of the constraint for S is at least 1 more than the
sum of the RHS of constraints of {Cj}t

j=1. Thus S gets at
least a total of unit tokens.

Now for i ∈ W , define Sp(i) =
P

e∈E′∩Ei
(1− xe) = |E′ ∩

Ei| − x(E′ ∩Ei) and for e ∈ E′, define r(e) = |{i ∈ W | e ∈
E′ ∩ Ei}|.

Lemma 6. We have
P

i∈W Sp(i) < r|W |.
Before proving Lemma 6, we argue that it implies that the
condition in step (3) holds. Lemma 6 implies that there
exists i ∈ W such that Sp(i) < r. Since x(E′ ∩ Ei) ≤
bi − |F ∩ Ei|, we have

|E′ ∩ Ei| = Sp(i) + x(E′ ∩ Ei) < r + bi − |F ∩ Ei|.
Since |E′ ∩Ei| and |F ∩Ei| are integers, |E′ ∩Ei| ≤ r + bi−
|F ∩ Ei| − 1, i.e., the condition in step (3) holds for i.

Proof of Lemma 6. Lemma 5 and Claim 4 imply thatP
e∈E′(1− xe) = |E′| − x(E′(V)) = |L|+ |T | − x(E′(V)) ≤

|T | = |W | − |W \ T |. Therefore
X
i∈W

Sp(i) =
X

e∈E′
r(e)(1− xe)

= r
X

e∈E′
(1− xe)−

X

e∈E′
(r − r(e))(1− xe)

≤ r|W | − r|W \ T | −
X

e∈E′
(r − r(e))(1− xe).

Moreover, the equality holds if and only if |L| = x(E′(V)).
Thus if |L| < x(E′(V)) or if r|W \T |+Pe∈E′(r− r(e))(1−
xe) > 0, then we obtain that

P
i∈W Sp(i) < r|W | as de-

sired. Assume on the contrary that this is not the case.
This combined with the fact that xe < 1 for all e ∈ E′,
we have r(e) = r for all e ∈ E′, W = T , and by Claim 4
(equality condition)

Pp
i=1 χE′(Si) = χE′ , where S1, . . . , Sp

are the inclusion-wise maximal sets in L. Therefore we haveP
i∈T χE′∩Ei

= r ·χE′ . This implies that r ·Pp
i=1 χE′(Si) =P

i∈T χE′∩Ei
, contradicting to the fact that the character-

istic vectors {χE′(S) | S ∈ L}∪{χE′∩Ei
| i ∈ T} are linearly

independent. Thus the proof is complete.

Generalization to matroids and polymatroids.
The algorithm above generalizes directly to the problem of

computing a minimum-cost basis in a matroid (or more gen-
erally an integer polymatroid) subject to ‘degree bounds’, by
using the submodularity of the rank function. Details are
omitted.

Concluding Remarks and Acknowledgments
We thank Zhenghua Fu for suggesting us the problem of
packing arborescences subject to degree bounds, which started
this project. We also thank Mohit Singh and R. Ravi for
several useful discussions.

The techniques developed in this paper can also be used
to solve connectivity problems on undirected graphs with
costs. In particular, to obtain O(fmax) additive approxima-
tion with respect to degree and O(1) multiplicative approx-
imation with respect to cost for Steiner Network problem.
We have recently learnt that Lau and Singh [14] have in-
dependently obtained similar results for this problem, and
hence we do not present them in this paper. Király et al. [10]
have recently obtained results for the matroid generalization
of the MCSP problem considered in Section 5. They obtain
an additive +(2r − 1) approximation for the case of upper
and lower bounds on the degrees and +(r−1) approximation
for upper bounds (or lower bounds) alone.

6. REFERENCES
[1] Jørgen Bang-Jensen, Stéphan Thomassé, and Anders

Yeo. Small degree out-branchings. Journal of Graph
Theory, 42(4), 2003.

[2] Vittorio Bilò, Vineet Goyal, R. Ravi, and Mohit
Singh. On the crossing spanning tree problem. In
APPROX-RANDOM, 2004.

[3] K. Chaudhuri, S. Rao, S. Riesenfeld, and K. Talwar.
Push relabel and an improved approximation
algorithm for the bounded degree MST problem. In
ICALP, 2006.

[4] J. Edmonds. Matroid Intersection in Discrete
Optimization I. Annals of Discrete Mathematics,
4:39–49, 1979.

[5] Andras Frank. Increasing the rooted-connectivity of a
digraph by one. Mathematical Programming (B),
84(3):565–576, 1999.

[6] M. Furer and B. Raghavachari. Approximating the
minimum-degree steiner tree to within one of optimal.
Journal of Algorithms, 17(3):409–423, 1994.

[7] Harold N. Gabow. On the L∞-Norm of Extreme
Points for Crossing Supermodular Directed Network
LPs. In IPCO, 2005.

[8] Michel X. Goemans. Minimum bounded degree
spanning trees. In FOCS, 2006.

[9] Kamal Jain. A factor 2 approximation algorithm for
the generalized steiner network problem.
Combinatorica, pages 39–61, 2001.

[10] Tamás Király, Lap Chi Lau, and Mohit Singh. Degree
bounded matriods and submodular flows. In IPCO,
2008.

[11] Philip N. Klein, Radha Krishnan, Balaji
Raghavachari, and R. Ravi. Approximation algorithms
for finding low-degree subgraphs. Networks,
44(3):203–215, 2004.

[12] J. Konemann and R. Ravi. A matter of degree:
Improved approximation algorithms for degree
bounded minimum spanning trees. SIAM Journal on
Computing, 31(3):1783–1793, 2002.

[13] Lap Chi Lau, Joseph (Seffi) Naor, Mohammad R.
Salavatipour, and Mohit Singh. Survivable network
design with degree or order constraints (Full version).
In STOC, 2007.

[14] Lap Chi Lau and Mohit Singh. Additive
approximation for bounded degree survivable network
design. In STOC, 2008.

[15] E.L. Lawler. Matroid intersection algorithms.
Mathematical Programming, 9:31–56, 1975.

[16] Vardges Melkonian and Éva Tardos. Approximation
algorithms for a directed network design problem. In
IPCO, 1999.

[17] Viswanath Nagarajan, R. Ravi, and Mohit Singh. A
simple proof of Jain’s 2-approximation algorithm for
Steiner Network. Manuscript, 2007.

[18] R. Ravi, M.V. Marathe, S.S. Ravi, D.J. Rosenkrantz,
and H.B. Hunt III. Many birds with one stone: Multi
objective approximation algorithms. In STOC, 1993.

[19] Mohit Singh and Lap Chi Lau. Approximating
minimum bounded degree spanning trees to within
one of optimal. In STOC, 2007.

